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A thermal boundary layer is established by heating a vertical plate in a dielectric 
liquid. An alternating voltage is applied between the heated plate and another 
plate which is not parallel to the heated plate. This voltage produces a non-uni- 
form electric field which in turn produces electrical forces acting on the gradients 
in dielectric permittivity which result from the temperature gradients. These 
electrical forces alter the boundary layer. In this paper approximate equations 
are developed which allow one to calculate the boundary-layer,thickness, velocity, 
and Nusselt numbers for the boundary layer in the presence of the non-uniform 
electric field. Numerical calculations show that the heat-transfer coefficient can 
be either increased or decreased by the non-uniform field, depending on whether 
the field is strongest at  the top or bottom of the plates and also on the field 
strength. Experiments were performed which demonstrate the change in heat 
transfer caused by the non-uniform field. 

1. Introduction 
The problem to be analyzed in the paper is shown in figure 1.  A heated vertical 

plate is placed in a dielectric liquid, causing a thermal boundary layer to form 
next to the plate. A second plate is placed in the fluid such that the plates are not 
parallel. An alternating voltage is applied between the plates, producing a non- 
uniform electric field. The field may be largest at  the bottom, as shown in figure 
1 (a) ,  or largest at  the top as in figure 1 ( b ) .  The effect of the non-uniform field 
on the boundary layer is the subject of this paper. The frequency of the voltage 
is high enough so that no free charge is present in the fluid. 

The electrical forces in the absence of free charge are the dielectrophoretic 
forces. (See equation (6).) The effective part of these forces is proportional to the 
electric field squared times the gradient in dielectric constant and is in the direc- 
tion of decreasing dielectric constant. The effect of these forces is to tend to pull 
the liquid with highest dielectric constant into the strongest field. For a dielectric 
liquid the highest dielectric constant occurs at  the lowest temperature. Thus, 
the coolest fluid tends to be pulled into the region of strongest field. If the region 
of strongest field is at the bottom the electric field effectively enhances gravity, 
increasing the heat-transfer coefficient. If the strongest field is at  the top, it 



694 R. J. Turnbull 

would be expected that the effective gravity would be reduced and the heat- 
transfer coefficient decreased. As we will see later, at  high field strengths other 
effects come into play. 

Free convection caused by heating a vertical plate has been studied exten- 
sively. Ede (1967) contains a review of the work on this problem. Turnbull 
(1969, 1971) is concerned with the effects of d.c. electric fields on the thermal 
boundary layer near a heated vertical plate, the first paper treating the effect of 

t I\ 

FIGURE 1.  Configuration of thermal boundary layer and electric field. The clcctric ficld is 
imposed between the two non-parallel plates. (a) Field strongest a t  the bottom. ( b )  Field 
strongest at the top. 

the field on a stable boundary layer, and the second the instability caused by 
the electric field. A survey of previous work on hea.t transfer in electric fields also 
appears in Turnbull (1 969). 

2. Theoretical analysis 
In  this section a set of approximate ordina.ry differential equations will be 

developed. These equations may be solved to find the boundary-layer thickness, 
fluid velocity and heat-transfer coefficient as functions of vertical position. The 
method used is similar to that of Squire (1938). 
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The mechanical equations governing the fluid motions are, if the fluid is 
assumed to be incompressible and the viscosity is constant, 

where v is the velocity, p the density, D/Dt = a/at + v .V, p is the pressure, is 
the acceleration of gravity, f ,  is the force due to the electric field and p is the 
dynamic viscosity. The equation of heat conduction, neglecting the viscous heat- 
ing, is 

where T is the temperature, c the specific heat, and Ic the thermal conductivity. 

pcDT/Dt = V .  (IcVT), (3) 

The electrical equations in the absence of free charge are 

VXE=O,  

V .  (cE) = 0, 
(4) 

( 5 )  

where E is the electric field and B the dielectric permittivity. The condition for 
there to be no free charge is that the period of the alternating field be much less 
than the dielectric relaxation time, E I ~ ,  where v is the electrical conductivity. 
The electrical force density under these conditions is (Stratton 1941) 

fe = -+(E.E)VC+~V E.Ep- . ( 3 
To complete the equations necessary for describing the motions, the functional 

dependence of the fluid properties on temperature is needed. The density and 
permittivity are assumed linear functions of temperature and the thermal dif- 
fusivity, K ,  is assumed independent of temperature. 

Tb is the temperature of the bulk of the fluid and pb and e6 are the fluid properties 
there. 

The electric field is non-uniform both because the plates are not parallel and 
because the permittivity is not constant. The dielectric permittivity varies on the 
order of 0.1 % per degree Centigrade in dielectric liquids. Therefore, the gradients 
in the field due to gradients in the permittivity are small and will be neglected 
compared to the field gradients due to the non-parallel plates. The resulting 
electric field distribution is 

- VY 
Y[(x+a)2+Y217 

vertical component E, = 

Vlx+al 
Y [(x + a)2 + Y21 ’ 

horizontal component E, = (9) 

where V is the voltage between the plates, y is the angle between the plates and 
a is the distance from the bottom of the heated plate to the line where the planes 
of the two plates intersect. a is positive if the plates are closer together at  the 
bottom and negative if closer together at  the top. 
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Since the motion is two-dimensional, (1) has two non-zero components which 
are 

(11 )  
In  order to find the steady-state solution for the boundary layer, time derivatives 
are set to zero. Taking the partial derivative with respect to y of (10) and sub- 
tracting the partial derivative with respect to x of ( 1  1)  yields, if non-uniformities 
in densities are neglected in the inertial terms, 

a3v ] ( 1 2 )  
a3u a3u a3v 

ax2ay ay3 ax3 axay2 
* 

Because the boundary layer is thin, approximations may be made in (12 ) .  First, 
the derivatives of the velocity components with respect to y are much larger 
than their derivatives with respect to x. Since the dielectric permittivity depends 
only on the temperature, las/ayl las/axl. If the boundary-layer thickness, 6, 
ismuchless than Ixs- a \ ,  then la(E$ +&!$)/ax\ @ la(E$ +E$)/ayl. Equation ( 1 2 )  now 

We also have 

Integrating (13) with respect to y gives 

where C(x)  is a constant of integration. Outside the boundary layer the velocity 
is zero and the temperature is Tb. Therefore, 

(16) 
V2 

c(x)  = + P b g + € b  2 Y 
and [ 15) is 

It can be seen from (17) tihat the electric field either adds to or subtracts from the 
force of gravity depending on the sign of x +a. When x + a is positive, the field is 
largest at the bottom, the electrical forces add to the gravitational one, increasing 
the convection in the boundary layer. If the fieldis largest at the top, the electrical 
forces are opposite to the gravitational one, thus reducing the velocity in the 
boundary layer. 
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If we take the steady-state form of ( 3 )  and apply the boundary-layer approxi- 

(18) 
aT i3T a2T 

U---+V-- = K- 
mation, the result is 

ax ay ay2* 

Equations (17)  and (18) may be solved to find the velocity and temperature dis- 
tribution in the boundary layer. The solution to these equations will differ from 
the ordinary thermal boundary-layer solution since the electrical force depends 
on both T and on vertical position x ,  while the gravitational force in (17)  depends 
on T only. In  order to solve these equations, we will use the technique of Squire 
(1938). This involves assuming velocity and temperature profiles in the hori- 
zontal direction and integrating the equations from 0 to 6 in y (from the plate 
to the edge of the boundary layer). The profiles which will be used are the same as 
in Squire (1938) for the ordinary boundary layer. The reason the same profiles 
were picked is that the electric field term and the gravitational term in (17)  both 
have the same horizontal dependence for a given vertical position. Therefore, 

(19) 
we assume 

T = Tb+(Tw-Tb)(1-y/8)2,  (20)  

= U(Y/6) ( 1  -Y/6)2, 

where U and 6 are functions of x. 
If (19)  and (20)  are substituted into (17)  and (18)  and then (17)  and (18)  inte- 

grated over y from 0 to 6 and the results non-dimensionalieed, the following 
equations are obtained. 

1 d  -- (U’z6’) = [l+F/( l+x’/a’)3](6’ /3)-  
105 dx’ 

The primes denote dimensionless quantities. The length scale is 

The other quantities appearing in (21)  and (22)  are defined as 

U’ = Ur/L;  6’ = 6 / L ;  x‘ = x/L;  

a’ = a / L ;  Pr = ,uC/pbK; F = (V2aeb/y2a3pbg/3). 

Pr is the Prandtl number and F is hhe ratio of the electrical forces to the gravita- 
tional forces at  the bottom of the plate. Equations (21)  and (22) are ordinary 
non-linear differential equations which may be solved by numerical techniques. 
Numerical solutions of these equations will be considered in the next section. 

3. Numerical results 
I n  order to determine the effect of the electric field on the boundary layer, 

(21)  and (22)  were solved numerically. The conditions for which the numerical 
solutions were obtained were a Prandtl number of 100, a dimensionless plate 
height of 50 with the plates of the two electrodes intersecting at  a dimensionless 
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distance of ten from the end of the plates. Calculations were made both for the 
electrodes closest together at the bottom and for the electrodes closest together 
a t  the top. Several different values of the voltage were tried for each case. The 
results of the numerica.1 calculations are shown in figures 2-4. To facilitate com- 
parison between the case with the plates closer a t  the top and the case with the 
plates closer at the bottom, a new parameter F’ will be defined: 

where h’ is the dimensionless height of the plate. F’ is the ratio of electrical forces 
to gravitational forces at the end where the pIates are closest. F is the same ratio 

8’ 

FIGURE 2.  Dimensionless boundary-layer thickness as a function of position for various 
voltages. For this figure Pr = 100, the dimensionless plate height is 50 and the point where 
the planes of the two plates intersect is adimensionless distance ten from the end of the plate. 

a t  t h e  lower end of the plates. If the apparatus is turned upside down and the 
same voltage is applied, the magnitude of F’ remains the same. (The sign is 
changed, however. ) 

Figure 2 contains plots of the boundary-layer thickness, 6‘, versus position in 
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the vertical direction, x’, for various values of F’. a’ = 10 when F’ > 0 and 
a’ = - 60 when P‘ < 0. The case for a’ = - 60 is the same as for a’ = 10 except 
the apparatus is turned upside down. For no voltage (3’’ = 0) the 6’-d curve 
is a straight line on the log-log plot. This is the solution 

6’ = 3.93 Pr-4 (Pr + sol21 )I x’a 

obtained by Squire (1938). When the plates are closer together at  the bottom 
(F‘ > 0) the electric field forces tend to move the fluid in the same direction as 
the gravitational forces. For this case, the application of a voltage makes the 
boundary layer thinner. The difference in boundary-layer thickness when there is 
an applied voltage and when there is no voltage is greatest (in reletive terms) 
a t  the bottom. The differences become smaller as x‘ (the vertical co-ordinate) 
is increased until the boundary layers are approximately the same thickness. 
This is to  be expected since the electric field term in (21) decreases with increasing 
x’. The larger the voltage, the thinner the boundary layer and the higher the point 
on the plate where the electric field effects become negligible. 

When the electrodes are closer together a t  the top (F‘ < 0), the electrical forces 
tend to  move the fluid in the opposite direction from the gravitational forces. 
For F‘ = - 1 the forces just cancel a t  the top of the heated plate; everywhere 
else the gravitational forces are larger. I n  this case the boundary-layer thickness 
differs from the no-voltage solution only near the top of the plate where it is 
larger. The solution for the boundary-layer thickness goes to  infinity a t  the top 
edge of the plate. As the voltage is increased the point where the forces cancel 
moves down the heated plate. Below the cancellation point the boundary layer 
becomes thicker than it was with no voltage with the thickness going to  infinity 
a t  the cancellation point. Of course, the solution was obtained using equations 
with boundary-layer approximations which are not valid in the vicinity of the 
cancellation point. Above the cancellation point, the net force near the plate is 
directed downward and a boundary layer is set up with the velocity also directed 
downward. The thickness of this boundary layer rises from zero a t  the top edge 
of the heated plate to  infinity a t  the cancellation point. 

Figure 3 shows the effect of the electric field on the velocity in the boundary 
layer, U‘. For no voltages the solution is U‘ = 5-17 (Pr + 20/21)-4 x‘a. For P’ > 0, 
increasing the voltage increases the velocity with the increase being greatest a t  
the lower end of the plate. For negative P‘, increasing the voltage ca.uses the 
velocity to decrease below the cancellation point. The velocity then goes to zero 
a t  the cancellation point. Above the cancellation point the velocity is directed 
downward (U‘ < 0) with the magnitude rising from zero at the top edge of the 
heated plate to a maximum and then decreasing to  zero at the cancellation point. 

The other quantity which was calculated numerically was the Nusselt number 
based on the height of the plate. The Nusselt number is defined as the power 
transferred across the boundary layer divided by the power which would be 
transferred purely by heat conduction across a fluid layer whose thickness equals 
the height of the plate and whose temperature difference is the same as for the 
boundary layer. The results of the Nusselt number calculations are shown in 
figure 4. The solution for no voltage is N u  = 40.19. For P’ > 0 increasing the 
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voltage results in an increased Nusselt number because of the decrease in the 
boundary-layer thickness. For F' < 0, increasing the voltage results in a decreas- 
ing Nusselt number until F' reaches minus one. Further increases in the voltage 
result in an increasing Nusselt number. The explanation is as follows. For 
0 > F' > - 1 the electric field increases the boundary-layer thickness. For 
F' < - 1 there exist two boundary layers. The one below the cancellation point 
is thicker than in the zero voltage case and therefore transfers less heat. However, 
the boundary layer above the cancellation point is thinner than the zero voltage 
boundary layer near the top of the plate. As the voltage is raised this upper 
boundary layer becomes thinner, thus increasing the heat transfer. 

4. Experimental results 
I n  order to  test the theoretical results of the previous sections, an experiment 

was performed. By measuring the temperatures of the two electrodes for various 
volta,ges, the dependence of the Nusselt number on voltage could be obtained. 
The experiments were done using fields which were strongest a t  the bottom. 
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The dimensions of the system were: plate height, 4*75in., plate width, 36in., 
and plate separation, 0.5 in. at the top and 0.18'15 in. at the bottom. 

The fluid used was Dow Corning 200 Fluid-100 Centistoke grade and the 
frequency of the voltage was 6OHz. If an ohmic conductivity model is used, 
published data indicate a time constant for charge accumulation of about lo3 sec 
for this liquid. Thus the frequency of the voltage seems high enough to prevent 
the accumulation of free charge. The results of another experiment (Turnbull 
1970) using the same liquid and frequency were successfully predicted neglecting 
free charge. Application of the voltage resulted in increases in the Nusselt number 
as predicted by the numerical calculations. The results of the experiments are 

Nu 

FIGURE 4. Nusselt number for various voltages. The other parameters are the 
same as in figure 2. 

shown in figure 5. This graph was plotted as follows. On the horizontal axis is the 
ratio of the experimental Nusselt number with a voltage applied to the experi- 
mental Nusselt number with no voltage. The experimental value with no electric 
field was found by taking all the experimental points with no E-field and doing a 
least-squares fit of the equation N u  = C,Rai+C, where Ra is the Rayleigh 
number and C, and C, are found from the least-squares fit. This form of the equa- 
tion was chosen since the approximate theory (Squire 1938) predicts a Nusselt 
number proportional to Ra4. Most of the zero voltage points agree with this curve 
to within 2 % and all within four per cent. The vertical axis is the ratio of the 
theoretical Nusselt number (calculated from (21) and (22) using the experimental 



702 R. J .  Turnbull 

data) to the theoretical Nusselt number calculated using the same data except 
assuming that the voltage was zero. It has been assumed that the power into the 
heated plate is divided equally between the two boundary layers on the sides of 
the plate. 

It can be seen from figure 5 that the measured percentage increases in heat 
transfer due to the electric field are greater than those predicted by the theory. 
Each of the horizontal collections of points in figure 5 consists of data taken at a 
particular voltage. The lowest group is at  13.48 kV, the middle group a t  17.75 kV 
and the highest group at 20-20kV. The experiment was performed as follows. The 
heater and the voltage were turned on simultaneously. After the boundary layer 
was formed, the temperatures of the two electrodes were measured at regular 
time intervals. During this time the liquid and the plate were both rising in 
temperature thus giving data for a variety of Prandtl numbers. Of the data taken 
at  each voltage, the points toward the left in figure 5 were taken when the liquid 
was coolest and those toward the right were taken when the liquid was warmest. 

I I I  I I  I I I I / l  I I I  

/ 1 , 1 1 1 ,  
1 .00 

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 

Experimental Nzc (voltage) 
Experimental Nu (no voltage) 

FIGURE 5. Comparison of experimental results with theoretical calculations. The hori- 
zontal axis is the ratio of the experimental Nusselt number with an electric field to that 
with no electric field. The vertical axis is the ratio of the theoretical Nusselt number with 
an electric field to that with no electric field. 

To understand the reason for the scatter in the experimental data consider 
the following model. The power into the heated plate, which is held constant, 
divides up to flow through the two boundary layers on the sides of the plate. 
These boundary layers can be represented by thermal resistances. The liquid 
on each side of the plate is represented by a thermal capacity. The air surrounding 
the apparatus tends to cool it so on each side of the plate there is a thermal resis- 
tance to account for the heat flow from the liquid into the surroundings. The 
thermal resistance of the air is much larger than the thermal resista,nce of the 
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boundary layers. Figure 5 was plotted assuming no increase in heat flow 
through the boundary layer altered by the electric field (only one of the two 
boundary layers experiences an electric field). After the system has been run- 
ning for a long time so that the temperatures have reached their steady-state 
values, the division of the heat input between the two sides of the plate depends 
on the total thermal resistance (boundary-layer thermal resistance plus air 
thermal resistance) on each side. Since the air thermal resistance is much larger 
than the boundary-layer thermal resistance, the change in boundary-layer 
resistance caused by the electric field causes essentially no change in the division 
of the input power between the two sides of the plate. However, when the system 
is first turned on the bulk of the liquid is a t  room temperature. At this time the 
division of the input heat power is determined by the ratio of the boundary-layer 
thermal resistances. The decrease in thermal resistance of one of the boundary 
layers caused by the voltage results in an increase in total heat flux through that 
boundary layer. Therefore initially the total heat flux through the boundary layer 
with the voltage applied is greater than it would have been with no voltage. 
This excess of heat flux over the no voltage value decreases in time until the heat 
flux is the same as it would have been for the no voltage case. (It should be noted 
that even though the heat flux is unchanged the Nusselt number is increased 
by areduction in the temperature gradient.) Figure 5 does not take account of this 
excess heat flux. If it was accounted for the result would be to reduce significantly 
the scatter in data points for a single voltage. In  Turnbull (1971) an increase in 
heat transfer was observed because of the d.c. electric field induced instability of 
the boundary layer. In  the experiments reported here, however, the boundary 
layers were stable, allowing the theory developed in this paper to be applied. 

An attempt to perform experiments with the electric field strongest at the top 
were unsuccessful because the non-heated electrode interfered with the boundary 
layer at  the top and because the boundary layer became unstable at  the top when 
a substantial voltage was applied. 

This work was supported by the National Science Foundation under grant 
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